Print |

You have not viewed any products recently.

 

LncRNA Research

Efficient and Robust Labeling System

 

In traditional gene expression profiling experiments, RNA labeling is typically initiated by oligo-dT-primed reverse transcription, which cannot generate Cy3- or Cy5-labeled antisense RNAs along the entire length of the transcript without 3' bias. Furthermore, this labeling method excludes a significant fraction (>25%) of RNA molecules that lack a classical poly(A) tail [1, 2].

To solve this problem, Arraystar scientists have developed an efficient, robust, linear amplification method to create ample fluorophore-labeled cRNA for both polyadenylated and non-polyadenylated transcripts. In this method, a mixture of poly dT oligonucleotides and random primers, each containing the T7 polymerase promoter, is annealed to the RNA. Then cDNA is synthesized by the addition of reverse transcriptase followed by RNase H and DNA polymerase. Finally, cyanine 3- or cyanine 5-labeled cRNA is synthesized using T7 RNA polymerase (Figure 1).

This labeling procedure greatly increases the yield of cRNA from low-abundance and degraded RNA molecules by more than 100-fold over conventional methods.

1

Figure 1. Arraystar's RNA Labeling Procedure

1. First strand cDNA synthesis: RNA is primed using a mixture of oligo(dT) and random primers, each containing the T7 polymerase promoter, to produce single strand cDNA.

2. Second strand cDNA synthesis: T7 template is annealed to the 3' end of the cDNA. Second strand cDNA is synthesized by adding RNase H and DNA polymerase.

3. Labeled antisense RNA (aRNA) synthesis: Cy3- or Cy5-labeled antisense RNAs are synthesized by T7 polymerase-primed in vitro transcription along the entire length of the transcript without 3' bias.

Related Services
LncRNA Array Service

SE-lncRNA Array Service
LncPath™ Array Service
T-UCR Array Service

Reference1. Cheng, J., et al., Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science, 2005. 308(5725): p. 1149-54.
2. Wu, Q., et al., Poly A- transcripts expressed in HeLa cells. PLoS One, 2008. 3(7): p. e2803.

 

Back to news

Publications >>

mRNA&LncRNA Epitranscriptomic Array
METTL3/IGF2BP3 axis inhibits tumor immune surveillance by upregulating N6-methyladenosine modification of PD-L1 mRNA in breast cancer. Wan W, et al. Molecular Cancer, 2022​

Full text>>

circRNA Epitranscriptomic Array
METTL14-mediated m6A modification of circORC5 suppresses gastric cancer progression by regulating miR-30c-2-3p/AKT1S1 axis. Fan H N, et al. Molecular Cancer, 2022​

Full text>>

 

Promotion >>

Epitranscriptomic Array 

Save 15% on Epitranscriptomic Profiling 
Valid 03/01/2022 - 6/30/2022


Request Quote>>

 

Brochures >> 

Arraystar Single Nucleotide Microarrays
- Locate and quantify the exact m6A site

Arraystar_m6A_Single_Nucleotide_Array_Web-1

Download.pdf

 

Webinars >>

Raising the Bar of Multi-transcrptomic Profiling of Small RNAs

Small_RNA_Array_Webinar

Watch video
 

How to Profile Small RNA Modifications?

Small_RNA_Modification

Watch video
 

How to Study Circular RNA Expression and Modifications?

circRNA_exp_and_mod

Watch video
 

How to Study LncRNA Expression and Modifications?

Lnc_exp_and_mod

Watch video