Human LncRNA Expression Array V4.0

  • Description
  • Highlights
  • Database

Arraystar Human LncRNA Array V4.0 has the best contents: a total of 40,173 lncRNAs in two major lncRNA collections for 7,506 Gold Standard LncRNAs and 32,667 Reliable LncRNAs, and a total of 20,730 protein coding mRNAs.

Arraystar is a pioneer in LncRNA arrays to systematically profile lncRNAs together with mRNAs on the same chip. To date, these microarrays have been an empowering tool and invaluable resource in LncRNA research touting many high impact publications. To incorporate rapid scientific advances and new data, Arraystar has now released new Human Version 4.0.

The Arraystar Human LncRNA Expression Array V4.0 contains the following two important changes from V3.0:

1. The best contents: the Gold Standard LncRNAs, Reliable LncRNAs and protein coding mRNAs

Unlike protein coding genes, publically available lncRNAs are often scantily annotated, partial in scope and scattered in collection. Arraystar maintains high quality proprietary transcriptome and lncRNA databases to extensively collect lncRNAs through our lncRNA discovery pipelines, external data sources, and knowledge-based mining of scientific publications. Arraystar Human LncRNA Array V4.0 has a total of 40,173 lncRNAs in two major lncRNA collections, 7,506 for Gold Standard LncRNAs and 32,667 Reliable LncRNAs, from more than 47 Tb worth of RNA-seq data and all major public databases and repositories, such as Refseq, USCS Known Genes, GENCODE, lincRNA catalogs, lncRNAdb, T-UCRs, RNAdb, NRED, and scientific publications.  

2. Towards systematic and functional annotation of LncRNAs

Importantly, systematic and detailed lncRNA annotations, subclassification and analyses are packaged in our sample-to-results microarray services to gain insight into the complex biology of lncRNAs. All the reported LncRNAs involved in biological processes, such as apoptosis, differentiation and development, or associated with human diseases, such as cancers, neurodegenerative diseases, and cardiovascular diseases, are comprehensively annotated and cross referenced. This rich source of information helps to unravel functional roles and molecular mechanisms of the LncRNAs.  

The Arraystar Human Expression Array V4.0 is available only through the LncRNA Expression Array service at Arraystar.

Product NameCatalog NoDescriptionFormatPrice
Human LncRNA Expression Array V4.0 AS-LNC-H-V4.0 20,730 mRNAs and 40,173 LncRNAs 8*60K

• The most sensitive and best technology to profile lncRNA expression. Better than RNA-seq for lncRNA profiling as lncRNAs are often at lower abundance.

• The most up-to-date, extensive and high quality array contents to include the Gold-Standard LncRNAs, Reliable LncRNAs and mRNAs certified with proteins on the same chip.

• Systematic and functional lncRNA annotations and analyses to incorporate advances in lncRNA research and are complete with genomic information, subclassification, and potential regulatory mechanisms, to gain insights into the complex lncRNA biology. LncRNAs associated with biological processes or human diseases are annotated and referenced.

• Unambiguous transcript-specific probes for accurate and reliable detection and quantification of transcript isoforms.

• A wealth of information for co-expressional and correlational studies of non-coding regulatory lncRNAs with protein coding mRNAs.

Data Sources
Composition of the Arraystar Human LncRNA Expression Array V4.0


Total number of distinct probes 60,903
Probe selection region Specific exon or splice junction along the entire length of the transcript
Probe specificity Transcript-specific
Labeling method cRNAs are labeled along the entire length without 3’ bias, even for degraded RNA at low amount.
Total LncRNAs 40,173
Gold Standard LncRNAs 7,506
Reliable LncRNAs 32,667
Transcribed pseudogenes 699
Protein coding mRNAs 20,730
LncRNA sources Databases current in 2015:
Refseq, UCSC, GENCODE, LncRNAdb, RNAdb, NRED, lincRNA catalogs (Cabili et al 2011, Clark et al 2015, Iyer et al 2015), ENCODE CAGE Clusters, PolyA-seq, deep RNA-Seq and capture seq data repositories.
Arraystar LncRNA collection pipelines. Literature:
Scientific publications up to 2015.
mRNA sources Refseq, GENCODE in conjunction with UniProt

1.Cabili, M.N. et al. (2011) Genes Dev 25(18):1915-27 [PMID: 21890647]
2.Labaj, P.P. et al. (2011) Bioinformatics 27(13):i383-91 [PMID: 21685096]

3.Kretz, M. et al. (2012) Genes Dev 26(4):338-43 [PMID: 22302877]
4.Xu, W. et al. (2011) Proc Natl Acad Sci U S A 108(9):3707-12 [PMID: 21317363]
5.Guttman, M. et al. (2010) Nat Biotechnol 28(5):503-10 [PMID: 20436462]
6.Derrien, T. et al. (2012) Genome Res 22(9):1775-89 [PMID: 22955988]
7.Khalil A.M. et al. (2009) Proc. Natl. Acad. Sci. U.S.A. 106(28):11667-72 [PMID: 19571010]
8.Cabili M.N. et al. (2011) Genes Dev. 25(18):1915-27 [PMID: 21890647]
9.Ørom U.A. et al. (2010) Cell 143(1):46-58 [PMID: 20887892]
10.Rinn J.L. et al. (2007) Cell 129(7):1311-23 [PMID: 17604720]
11.Bejerano G. et al. (2004) Science 304(5675):1321-5 [PMID: 15131266]
12.Pruitt K.D. et al. (2005) Nucleic Acids Res. 33(Database issue):D501-4 [PMID: 15608248]
13.Pang K.C. et al. (2005) Nucleic Acids Res. 33(Database issue):D125-30 [PMID: 15608161]
14.Pang K.C. et al. (2007) Nucleic Acids Res. 35(Database issue):D178-82 [PMID: 17145715]
15.Mercer T.R. et al. (2008) Proc. Natl. Acad. Sci. U.S.A. 105(2):716-21 [PMID: 18184812]
16.Hsu F. et al. (2006) Bioinformatics 22(9):1036-46 [PMID: 16500937]
17.Harrow J. et al. (2006) Genome Biol. 7 Suppl 1:S4.1-9 [PMID: 16925838]
18.Guttman M. et al. (2009) Nature 458(7235):223-7 [PMID: 19182780]
19.Dinger M.E. et al. (2009) Nucleic Acids Res. 37(Database issue):D122-6 [PMID: 18829717]
20.Benson D.A. et al. (2004) Nucleic Acids Res. 32(Database issue):D23-6 [PMID: 14681350]
21.Amaral P.P. et al. (2011) Nucleic Acids Res. 39(Database issue):D146-51 [PMID: 21112873]
22.Sun L. et al. (2012) BMC Bioinformatics 13:331 [PMID: 23237380]
23.Ramos A.D. et al. (2013) Cell Stem Cell 12(5):616-28 [PMID: 23583100]
24.Ponjavic J. et al. (2009) PLoS Genet. 5(8):e1000617 [PMID: 19696892]
25.Willingham A.T. et al. (2005) Science 309(5740):1570-3 [PMID: 16141075]
26.The ENCODE Consortium. .
27.Clark M.B. et al. (2015) Nat. Methods 12(4):339-42 [PMID: 25751143]
28.Iyer M.K. et al. (2015) Nat. Genet. 47(3):199-208 [PMID: 25599403]
29.Quek X.C. et al. (2015) Nucleic Acids Res. 43(Database issue):D168-73 [PMID: 25332394]
30.Skroblin P. and M. Mayr (2014) Circ. Res. 115(7):607-9 [PMID: 25214572]
31.Kurian L. et al. (2015) Circulation 131(14):1278-90 [PMID: 25739401]
32.Hu Y. et al. (2014) Cancer Res. 74(23):6890-902 [PMID: 25277524]
33.Fang X.Y. et al. (2015) Cancer Lett. 356(2 Pt B):357-66 [PMID: 25444905]
34.Howald C. et al. (2012) Genome Res. 22(9):1698-710 [PMID: 22955982]
35.Miura P. et al. (2013) Genome Res. 23(5):812-25 [PMID: 23520388]
36.St Laurent G. et al. (2015) Trends Genet. 31(5):239-51 [PMID: 25869999]
37.Yan X. et al. (2015) Cancer Cell 28(4):529-40 [PMID: 26461095]
38.Hackermuller J. et al. (2014) Genome Biol. 15(3):R48 [PMID: 24594072]
39.St Laurent G. et al. (2013) Genome Biol. 14(7):R73 [PMID: 23876380]
40.Chen G. et al. (2013) Nucleic Acids Res. 41(Database issue):D983-6 [PMID: 23175614]
41.Ferdin J. et al. (2013) Cell Death Differ. 20(12):1675-87 [PMID: 24037088]
42.Silva J.M. et al. (2010) Genomics 95(6):355-62 [PMID: 20214974]