• Description
  • Highlights
  • Database
  • Workflow
  • Manuals and Tool
Product NameCatalog NoSizePrice
nrStar™ Human tRF&tiRNA PCR Array AS-NR-002-1 384-well(2*192) / plate $435.00
Add To Cart

The nrStar™ Human tRF & tiRNA PCR Array profiles 185 prevalent tRFs & tiRNAs compiled in the databases and newly reported in recent publications [6].

tRFs & tiRNAs, generated through precise biogenesis processes from tRNA as small noncoding RNAs, perform many biological functions to act as microRNAs in RNA interference; regulate target mRNA stability; assemble stress granules in response to cellular stress; modulate apoptosis; and pass on as epigenetic factors in intergenerational inheritance [1] (Fig. 1). The composition and abundance of tRFs&tiRNAs are highly dependent on the cell types and are associated with many disease conditions. The highly enriched presence in biofluids, often much more so than microRNAs, makes them excellent biomolecules for biomarkers [2-5].

The array is a powerful tool to conveniently and quickly profile the tRFs & tiRNAs with the highest potentials. To achieve high specificity, Arraystar introduces two artificial sequence to the 3’ and 5’ end of tRF&tiRNA. Primer sets targeting 5’ and 3’ junction in the qPCR assays effectively discriminate tRF&tiRNA from its precursors and other small RNA, thus getting a more reliable and accurate detection. Arraystar provides an optimized and indispensable cDNA synthesis kit, rtStar™ First-Strand cDNA Synthesis Kit (3’ and 5’ adaptor)  (AS-MR-003) , for the adaptor ligation and cDNA preparation. The panel also includes Spike-in control, Positive PCR Control, Genomic DNA Control and normalization references to ensure the upmost data quality.



Figure 1. tRF & tiRNA functions and associated diseases.

Reference 1. Anderson P. and P. Ivanov (2014) "tRNA fragments in human health and disease." FEBS Lett. 588(23):4297-304 [PMID: 25220675]
2. Telonis, A. G. et al. Dissecting tRNA-derived fragment complexities using personalized transcriptomes reveals novel fragment classes and unexpected dependencies. Oncotarget 6, 24797-24822, doi:10.18632/oncotarget.4695 (2015). [PMID: 26325506].
3. Olvedy, M. et al. A comprehensive repertoire of tRNA-derived fragments in prostate cancer. Oncotarget, doi:10.18632/oncotarget.8293 (2016). [PMID: 27015120].
4. Schageman, J. et al. The complete exosome workflow solution: from isolation to characterization of RNA cargo. BioMed research international 2013, 253957, doi:10.1155/2013/253957 (2013). [PMID: 24205503].
5. Dhahbi, J. M. et al. 5' tRNA halves are present as abundant complexes in serum, concentrated in blood cells, and modulated by aging and calorie restriction. BMC genomics 14, 298, doi:10.1186/1471-2164-14-298 (2013). [PMID: 23638709].
6. Kumar, P., Mudunuri, S. B., Anaya, J. & Dutta, A. tRFdb: a database for transfer RNA fragments. Nucleic acids research 43, D141-145, doi:10.1093/nar/gku1138 (2015). [PMID: 25392422].

• New frontier–Explosive growth of tRF & tiRNA research in recent years;

• Focus–The prevalent tRF & tiRNA species having the highest biological potentials are profiled; 

• Rigorous–All primer pairs are meticulously designed, optimized and validated;

• Convenient–Easy-to-use, ready-to-run, standard qPCR plate format for direct sample application. No sample pre-amplification is needed.


A smart system distinguish tRF&tiRNA from its precursor

tRF&tiRNAs are generated from tRNA or pre-tRNA through precise biogenesis processes. It is difficult to distinguish tRF&tiRNA from its precursor (tRNA or pre-tRNA) by conventional qPCR for their sharing of the same sequence. Moreover, length of tRFs&tiRNAs are 16~50 nt, too short to perform qPCR process. Arraystar exploit a smart system by introducing two artificial sequence to the 3’and 5’end of tRF&tiRNA, a famous and validated technology used in small RNA library preparation for sequencing. Corresponding forward and reverse primers targeting 5’and 3’ junction effectively discriminate tRF&tiRNA from its precursors and other small RNA, thus getting a reliable and accurate detection of tRF&tiRNA expression (Figure 1). nrStar™ Human tRF&tiRNA PCR Array System is composed of two products: rtStar™ First-Strand cDNA Synthesis Kit (3’and 5’adaptor) for adaptor ligation and cDNA synthesis, nrStar™ Human tRF&tiRNA PCR Array for tRF&tiRNA detection.


Figure 1. By introducing 5’and 3’adaptors, nrStar™ Human tRF&tiRNA PCR panel detects the specific tRF&tiRNAs with no amplification of tRNAs or pre-tRNAs. 



Human tRFs&tiRNAs (185)

1001, 1003, 1004, 1005, 1006, 1007, 1010, 1012, 1013, 1015, 1020, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042
3002B, 3004B, 3006B, 3031B, 3033A, 3030A, 3030B, 3002A, 3003A, 3003B, 3006A, 3008A, 3008B, 3009B, 3011/12A, 3016/18/22B, 3017A, 3017B, 3019/20/21B, 3026B, 3027/28B, 3019A, 3020/21A, 3022A, 3026/27/28A, 3029A, 3031A
5001A, 5001B, 5002A, 5002B, 5008B, 5009A, 5009B, 5010A, 5011A, 5012B, 5013B, 5015/17A, 5016A, 5019A, 5019B, 5020/21A, 5020B, 5021B, 5022A, 5022B, 5023B, 5024A, 5026A, 5026/27B, 5028/29A, 5028/29B, 5032A, 5032B, TRF21-26, TRF63, TRF23, TRF205, TRF208, TRF223, TRF250, TRF272/274, TRF273, TRF293/294, TRF305/306/307, TRF308, TRF312, TRF316, TRF318, TRF320, TRF321, TRF322, TRF323/324/326, TRF337-339, TRF347, TRF351, TRF354, TRF356/359, TRF368, TRF366, TRF365, TRF373, TRF374, TRF375, TRF393, TRF396, TRF417, TRF457, TRF460, TRF462, TRF463, TRF466/468/469/471/472/473, TRF490, TRF492, TRF493, TRF511, TRF524, TRF533/534, TRF537, TRF546/547, TRF550/551
tiRNA-3 (3’ tRNA half)
3'tiR_007_GluTTC (n), 3'tiR_012_ArgCCT (n), 3'tiR_026_GlnCTG (n), 3'tiR_028_HisGTG (mt), 3'tiR_037_ArgCCG (n), 3'tiR_056_ValTAC (mt), 3'tiR_060_MetCAT (n), 3'tiR_063_ArgCCT (n), 3'tiR_075_GluTTC (mt)/ GluTTC (mt-la), 3'tiR_078_ArgTCT (n), 3'tiR_080_ProTGG (mt), 3'tiR_082_ThrTGT (mt), 3'tiR_088_LysCTT (n)
tiRNA-5 (5’ tRNA half)
5003/4C, 5008C, 5009C, 5016C, 5026/27C, TRF62, TRF315, TRF327, TRF353, TRF419, tiRNA-5033-ProTGG-1, tiRNA-5033-GluTTC-1, tiRNA-5029-GlyGCC-2, tiRNA-5034-ValCAC-2, tiRNA-5034-ValCAC-3, tiRNA-5030-HisGTG-1, tiRNA-5030-GluTTC-1, tiRNA-5033-GluTTC-2, tiRNA-5030-LysCTT-2, tiRNA-5029-ProAGG, tiRNA-5031-GluTTC-1, tiRNA-5031-HisGTG-1, tiRNA-5031-GluCTC-1, tiRNA-5034-GlyCCC-1, tiRNA-5034-GluTTC-1, tiRNA-5033-LysTTT-1, tiRNA-5032-LysTTT-1, tiRNA-5031-PheGAA, tiRNA-5034-ValTAC-3, tiRNA-5030-GlnTTG-3, tiRNA-5029-GlyGCC-3, tiRNA-5035-GluTTC-1, tiRNA-5035-GluTTC-2, tiRNA-5034-GluTTC-2, tiRNA-5035-GluTTC-3, tiRNA-5032-GluTTC-1, tiRNA-5035-GluCTC, tiRNA-5030-SerGCT-3, tiRNA-5030-SerGCT-1, tiRNA-5031-HisGTG-2, tiRNA-5029-AlaAGC-1, tiRNA-5032-LysCTT-1


tRFdb  http://genome.bioch.virginia.edu/trfdb/
MINTbase  https://cm.jefferson.edu/MINTbase/

Olvedy, M. et al. A comprehensive repertoire of tRNA-derived fragments in prostate cancer. Oncotarget, doi:10.18632/oncotarget.8293 (2016). 
Selitsky SR, Baran-Gale J, Honda M, Yamane D, Masaki T, Fannin EE, et al. Small tRNA-derived RNAs are increased and more abundant than microRNAs in chronic hepatitis B and C. Scientific reports 2015;5:7675.
Wang Q, Lee I, Ren J, Ajay SS, Lee YS, Bao X. Identification and functional characterization of tRNA-derived RNA fragments (tRFs) in respiratory syncytial virus infection. Molecular therapy : the journal of the American Society of Gene Therapy 2013;21:368-79.



Figure 1. tRF&tiRNA qPCR array workflow.


Compatible qPCR Instruments:

• ABI ViiA™ 7
• ABI 7500 & ABI 7500 FAST
• ABI 7900HT
• ABI QuantStudio™ 6 Flex Real-Time PCR system
• ABI QuantStudio™ 7 Flex Real-Time PCR system
• ABI QuantStudio™ 12K Flex Real-Time PCR System
• Bio-Rad CFX384
• Bio-Rad iCycler & iQ Real-Time PCR Systems
• Eppendorf Realplex
• QIAGEN Rotor Gene Q 100
• Roche Light Cycler 480