• Description
  • Highlights
  • Database
  • Workflow
  • Manual and Tool
Product NameCatalog NoSizePrice
nrStar™ Human Functional LncRNA PCR Array AS-NR-004-1 384-well/ plate $325.00
Add To Cart
nrStar™ Human Functional LncRNA PCR Array (Roche Light Cycler 480) AS-NR-004-1-R 384-well/ plate $325.00
Add To Cart

Arraystar nrStar™ Human Functional LncRNA PCR Array profiles 372 gold standard lncRNAs with known biological functions or disease associations. The lncRNAs are comprehensively curated from scientific publications and the most current databases. Compared with the majority of lncRNAs that are functionally still unknown and often partial in sequences, these lncRNAs are well characterized and annotated for their wide range of biological functions, such as stem cell pluripotency, embryonic development, cardiovascular, hematopoiesis, immunity, and endocrine systems, by multiple mechanisms of gene expression regulation, epigenetic control, genomic imprinting, and chromatin modification (Fig.1) [1]. Dysregulated lncRNA expression has been strongly associated with conditions such as neurodegenerative, cardiovascular [2], diabetic, cancer [3] and other diseases. The presence in biofluids and the  tissue/disease specificities often higher than mRNAs have been utilized for biomarkers, with or without a known function (Fig. 2). For example, PCA3 has been FDA approved for prostate cancer diagnostic use.
 

LncRNA-Table_1

Figure 1. A snippet of the Gold Standard LncRNAs that are functionally characterized, experimentally supported and well documented, as annotated and cross-references by Arraystar Functional LncRNA PCR Array.

2

Figure 2. A snippet of the lncRNAs on the PCR array with published biomarker potentials and utilities.


Arraystar Functional LncRNA PCR Array is methodically designed for the best content as well as the upmost technical performance. The LncRNA primers specifically target the unique exon or splice junction sites, allowing unambiguous and accurate detection of lncRNA isoforms. A “smart” cDNA synthesis strategy enables efficient and robust detection of both poly(A ) and poly(A-) lncRNAs, in intact or degraded RNA samples, from cells or biofluids. The stringent external, internal and reference controls assure accurate quantification, robust normalization and high data quality, to meet or exceed the needs of clinical diagnosis and biomarker validation.

For cDNA preparation, we highly recommend rtStar™ First-Strand cDNA Synthesis Kit  (AS-FS-001), of which reagent formulations and protocols have been rigorously tested and optimized for Arraystar PCR Array system.

Reference[1] Knoll M, Lodish HF, Sun L. Long non-coding RNAs as regulators of the endocrine system. Nature reviews Endocrinology 2015;11:151-60.
[2] Lorenzen JM, Thum T. Long noncoding RNAs in kidney and cardiovascular diseases. Nature reviews Nephrology 2016;12:360-73.
[3] Schmitt AM, Chang HY. Long Noncoding RNAs in Cancer Pathways. Cancer cell 2016;29:452-63.
[4] Consortium CAD, Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes TL, et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nature genetics 2013;45:25-33.
[5] Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, et al. Genomewide association analysis of coronary artery disease. The New England journal of medicine 2007;357:443-53.
[6] Vausort M, Wagner DR, Devaux Y. Long noncoding RNAs in patients with acute myocardial infarction. Circulation research 2014;115:668-77.
[7] Ishii N, Ozaki K, Sato H, Mizuno H, Saito S, Takahashi A, et al. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. Journal of human genetics 2006;51:1087-99.
[8] Kumarswamy R, Bauters C, Volkmann I, Maury F, Fetisch J, Holzmann A, et al. Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circulation research 2014;114:1569-75.
[9] Arisi I, D'Onofrio M, Brandi R, Felsani A, Capsoni S, Drovandi G, et al. Gene expression biomarkers in the brain of a mouse model for Alzheimer's disease: mining of microarray data by logic classification and feature selection. Journal of Alzheimer's disease : JAD 2011;24:721-38.
[10] Kraus TF, Haider M, Spanner J, Steinmaurer M, Dietinger V, Kretzschmar HA. Altered Long Noncoding RNA Expression Precedes the Course of Parkinson's Disease-a Preliminary Report. Molecular neurobiology 2016.
[11] Xie H, Ma H, Zhou D. Plasma HULC as a promising novel biomarker for the detection of hepatocellular carcinoma. BioMed research international 2013;2013:136106.
[12] Hu X, Feng Y, Zhang D, Zhao SD, Hu Z, Greshock J, et al. A functional genomic approach identifies FAL1 as an oncogenic long noncoding RNA that associates with BMI1 and represses p21 expression in cancer. Cancer cell 2014;26:344-57.
[13] McCleland ML, Mesh K, Lorenzana E, Chopra VS, Segal E, Watanabe C, et al. CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. The Journal of clinical investigation 2016;126:639-52.

 

Best coverage for functional lncRNAs: 372 well-known LncRNAs characterized for biological functions or human disease association are comprehensively collected from the most updated public databases and landmark publications. The PCR Array has the lncRNA content selection leading the market.

Most reliable and accurate quantification: By using a series of internal and external controls, each lncRNA is quantified at high accuracy and data quality. Instead of using a single reference gene, normalization is performed by geometric means of multiple reference genes selected by experimentally validated algorithm.

Robust detection even in degraded samples: Our “smart” workflow ensures the efficient and robust detection of polyadenylated and non-polyadenylated lncRNAs from either intact or degraded RNA samples.

Transcript-specific detection: Transcript-specific PCR primers are designed to target the specific exon or splice junction sites, for unambiguous and accurate detection of each individual LncRNA isoforms.

Proven performance: All the primer sets are optimized for the upmost performance for all LncRNA. The assays on the panel are, fully validated experimentally using numerous cell types.

Fast and easy: Ready-to-use PCR array in a 384-well plate format. Just mix the converted cDNA samples with the qPCR Master Mix, add to the array and run the qPCR. The entire process can be completed in less than 4 hours.


Best coverage and annotation of functional lncRNAs

nrStar™ Human Functional LncRNA PCR Array has the lncRNA content selection leading the market. 372 well-known LncRNAs characterized for biological functions or human disease association are comprehensively collected from the most updated public databases and landmark publications. The LncRNAs that have been associated with human diseases including cancers, cardiovascular diseases and neurodegenerative diseases are carefully categorized and annotated in detail to facilitate the researchers’study and biomarker validation. The annotated information includes:

• Transcript ID in public database: [Refseq, Genebank, Ensemble, UCSC...] 

• Class based on genomic location: [enhancer, antisense, intergenic, intronic, bidirectional...]

• Target mRNA genes

• Mechanisms : [signal, decoy, scaffold, guide, ceRNA, miRNA sponge, splicing ...]

• Biological functions: [chromatin modification, cell cycle, differentiation, replication, methylation, imprinting, immune, metabolism, senescence...]

• Diseases: [cancers, cardiovascular, neurodegenerative, kidney, diabetes, syndromes...] 


1. lncRNAs in cancers

Figure_1

Figure 1. Annotation of a representative cancer-associated lncRNA NBAT-1. The lncRNA NBAT-1 promotes neuronal differentiation in neuroblastoma cells through regulation of the neuron-specific transcription factor NRSF/REST, and repression of this lncRNA is associated with high-risk neuroblastoma (Pandey et al. 2014). Information of NBAT-1 annotated by Arraystar is shown in the green rectangular area.

Figure_2

Figure 2. Some lncRNAs associated with cancers. The color represents either upregulated (red) or downregulated (blue) compared to normal tissues (Bartonicek et al. 2016). 


List of cancer-associated lncRNAs in PCR Array

7SK, AA174084, AB073614, ABHD11-AS1, ACTA2-AS1, ADAMTS9-AS2, AF339813, AFAP1-AS1, AIRN, AK095147, AP5M1, APOC1P1, ARA, ATG9B (sONE/NOS3AS), BANCR, BCAR4, BGLT3, BLACAT1, BOK-AS1, C5orf66-AS1 (Epist), CASC11, CASC2 (C10orf5), CASC9 (ESCCAL-1 ), CBR3-AS1, CCAT1, CCAT2, CCDC26, CCEPR, CRNDE, CTB-89H12.4, CTBP1-AS, DLEU1, DNM3OS, DRAIC (LOC145837), DSCAM-AS1, EGFR-AS1, EGOT, ENST00000434223, ENST00000456816, ENST00000480739, EPB41L4A-AS1, EPB41L4A-AS2, EWSAT1, FALEC, FAS-AS1 (SAF), FER1L4, FEZF1-AS1, FGF14-AS2, FLG-AS1, FOXCUT, FTX, GACAT1, GACAT2, GACAT3, GAPLINC, GAS5, GAS8-AS1, GATA6-AS1, GHET1, H19 (UC001lva.4), HAGLR, HAND2-AS1, HCP5, HIF1A-AS1, HIF1A-AS2, HNF1A-AS1, HOTAIR, HOTAIRM1, HOTTIP, HOXA-AS2 (HOXA3as), HULC, KCNQ1OT1, KRASP1, KRT18P55, KRT7-AS, L1PA16, LINC00032, LINC00152, LINC00312, LINC00467, LINC00473, LINC00668, LINC00673, LINC00857, LINC00901 (BC040587), LINC00951, Linc00963, LINC00970, LINC01133, LINC01315, LINC01630, LINC-PINT, Linc-POU3F3, lincRNA-p21, lincRNA-RoR, lncRNA-CTD903, lncRNA-HEIH, LOC100130476, LOC100507661 , LOC101054525 (PR antisense), LOC389332, LSINCT5, LUCAT1, LUNAR1, LUST, MACROD2-AS1, MEG3, MER11C, MIAT (Gomafu), MINA, MIR100HG, MIR155HG, MIR17HG, MIR31HG, MT1JP, MYCNOS, MYCNUT, NAMA, NBAT1, NDM29, NEAT1, NKILA, NPTN-IT1 (lncRNA-LET), OR3A4P, ORAOV1, PACERR, PANDAR, PARROT, PAX8-AS1, PCA3, PCAT1, PCAT18, PCAT29, PCAT6 (KDM5B-AS1), PCBP2-OT1, PCGEM1, PGM5-AS1 (LOC572558), PICSAR, PINC, POU6F2-AS2, PRNCR1, PSF inhibiting RNA, PTCSC1 (AK023948), PTCSC3, PTENP1, RGMB-AS1, RMEL3, RUNX1-IT1 (C21orf96), SAMMSON , SBF2-AS1, SCHLAP1, SNHG1, SNHG15, SNHG16, SNHG20, SNHG5, SOX2OT, ST7-AS1, ST7-AS2, ST7-OT3, ST7-OT4, SUMO1P3, TARID, TCL6, TDRG1, TERC, TIE1-AS, TRERNA1, TRIM52-AS1, TUG1, TUSC7 (loc285194; LSAMP-AS3), TUSC8, U79277, uc.338, uc.73A(P), UCA1 (CUDR), UFC1 lincRNA , VLDLR-AS1, WSPAR (lncTCF7), WT1-AS, X91348, Yiya (LINC00538), ZEB2-AS1, ZFAS1 (ZNFX1-AS1), ZNF582-AS1
For full annotated information of lncRNAs in cancers, please download the following file:
Functional LncRNAs in cancers-Arraystar.xlsx


2. LncRNAs in cardiovascular diseases

Figure_3

Figure 3. Working model of lncRNA Mhrt in the heart. Brg1 represses lncRNA Mhrt transcription, whereas Mhrt prevents Brg1 from recognizing its chromatin targets. Brg1 functions through two distinct promoter elements to bidirectionally repress Myh6 and Mhrt expression (Devaux et al. 2015). Information of MHRT annotated by Arraystar is shown in the blue rectangular area.

Figure_4

Figure 4. Regulation of cardiac pathways by lncRNAs. LncRNAs are expressed in various cell types and target multiple genes involved in important functions of the heart. *These lncRNAs have been shown to regulate these processes in the heart in vivo. The list of lncRNAs in this Figure is not exhaustive.(Devaux et al. 2015)


List of lncRNAs in cardiovascular diseases in PCR Array

7SK, ALIEN, ATG9B (sONE/NOS3AS), CARMEN, CDKN2B-AS1 (ANRIL), EMX2OS, FENDRR, FGF10-AS1, GAS5, H19 (UC001lva.4), HAS2-AS1, HIF1A-AS1, HIF1A-AS2, HOTAIR, KCNQ1OT1, LINC00323, lincRNA-p21, LOC100129973, LOC100507537, MHRT, MIAT (Gomafu), MIR222HG (Lnc-Ang362), NONHSAT073641, NONHSAT112178 (LncPPARd), Novlnc35, Novlnc44, Novlnc76, NPPA-AS1, NRON, PANCR, PUNISHER (AGAP2-AS1), PVT1, SALRNA1, SENCR, SMILR, TERMINATOR, TIE1-AS, TUG1, UCA1 (CUDR)
For full annotated information of lncRNAs in cardiovascular diseases, please download the following file:
Functional LncRNAs in cardiovascular diseases-Arraystar.xlsx


3. LncRNAs in neurodegenerative diseases

Figure_5

Figure 5. Dysregulation of BACE1 and Aß production in Alzheimer’s dis¬ease. The principal regulatory elements modulating BACE1 expression and activity and the role of BACE1 in the production of Aß peptide in Alzheimer’s disease are shown. These pathways may create a feed-forward mechanism in which increased production of Aß in Alzheimer’s disease induces higher BACE1 expression, which in turn boosts Aß production (St George-Hyslop and Haass 2008). Information of BACE1-AS annotated by Arraystar is shown in the red rectangular area.


List of lncRNAs in neurodegenerative diseases in PCR Array

17A, 51A, anti-NOS2A, ATXN8OS (SCA8), BACE1-AS, BDNF-AS, CDKN2B-AS1 (ANRIL), DGCR5, DLX6-AS1 (Evf2), DPY19L2P2, GDNF-AS1 (GDNFOS), H19 (UC001lva.4), HAR1A, HAR1B (HAR1R), HTT-AS, LINC00299, LINC00599 (RNCR3), LINC01262, lincRNA-p21, MALAT1, MEG3, MIAT (Gomafu), NAT-RAD18, NEAT1, PINK1-AS, PNKY, RMST, SCAANT1, SNHG1, SNHG3, SOX2OT, TUG1, TUNA, U1 spliceosomal lncRNA, UCH1LAS

For full annotated information of lncRNAs in cardiovascular diseases, please download the following file:
Functional LncRNAs in neurodegenerative diseases-Arraystar.xlsx

For full annotated information of lncRNAs in nrStar™ Human Functional LncRNA PCR Array, please download the following file:
Functional LncRNAs in nrStar™ Human Functional LncRNA PCR Array.xlsx


Reference
BARTONICEK N, MAAG JL AND DINGER ME. 2016. Long noncoding RNAs in cancer: mechanisms of action and technological advancements. Molecular cancer 15: 43.
DEVAUX Y, ZANGRANDO J, SCHROEN B, CREEMERS EE, PEDRAZZINI T, CHANG CP, DORN GW, 2ND, THUM T, HEYMANS S AND CARDIOLINC N. 2015. Long noncoding RNAs in cardiac development and ageing. Nature reviews Cardiology 12: 415-425.
PANDEY GK ET AL. 2014. The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation. Cancer cell 26: 722-737.
ST GEORGE-HYSLOP P AND HAASS C. 2008. Regulatory RNA goes awry in Alzheimer's disease. Nature medicine 14: 711-712.
BARTONICEK N, MAAG JL AND DINGER ME. 2016. Long noncoding RNAs in cancer: mechanisms of action and technological advancements. Molecular cancer 15: 43.
DEVAUX Y, ZANGRANDO J, SCHROEN B, CREEMERS EE, PEDRAZZINI T, CHANG CP, DORN GW, 2ND, THUM T, HEYMANS S AND CARDIOLINC N. 2015. Long noncoding RNAs in cardiac development and ageing. Nature reviews Cardiology 12: 415-425.
PANDEY GK ET AL. 2014. The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation. Cancer cell 26: 722-737.
BARTONICEK N, MAAG JL AND DINGER ME. 2016. Long noncoding RNAs in cancer: mechanisms of action and technological advancements. Molecular cancer 15: 43.
DEVAUX Y, ZANGRANDO J, SCHROEN B, CREEMERS EE, PEDRAZZINI T, CHANG CP, DORN GW, 2ND, THUM T, HEYMANS S AND CARDIOLINC N. 2015. Long noncoding RNAs in cardiac development and ageing. Nature reviews Cardiology 12: 415-425.
PANDEY GK ET AL. 2014. The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation. Cancer cell 26: 722-737.

Cancer [222]:
7SK, AA174084, AB073614, ABHD11-AS1, ACTA2-AS1, ADAMTS9-AS2, AF339813, AFAP1-AS1, AIRN-1, AIRN-2, AK095147, AP5M1, APOC1P1, ARA-1, ARA-2, ATG9B-1, ATG9B-2, BANCR, BCAR4-1, BCAR4-2, BGLT3, BLACAT1, BOK-AS1, C5orf66-AS1, CASC11-1, CASC11-2, CASC2-1, CASC2-2, CASC9, CBR3-AS1-1, CBR3-AS1-2, CCAT1, CCAT2, CCDC26, CCEPR, CRNDE, CTB-89H12.4, CTBP1-AS, DLEU1-1, DLEU1-2, DNM3OS-1, DNM3OS-2, DRAIC (LOC145837), DSCAM-AS1-1, DSCAM-AS1-2, EGFR-AS1, EGOT, ENST00000434223, ENST00000456816, ENST00000480739, EPB41L4A-AS1, EPB41L4A-AS2, EWSAT1, FALEC, FAS-AS1 (SAF), FER1L4, FEZF1-AS1, FGF14-AS2, FLG-AS1-1, FLG-AS1-2, FOXCUT, FTX, GACAT1-1, GACAT1-2, GACAT2, GACAT3, GAPLINC-1, GAPLINC-2, GAS5, GAS8-AS1, GATA6-AS1, GHET1, H19-1, H19-2, HAGLR, HAND2-AS1, HCP5, HIF1A-AS1, HIF1A-AS2, HNF1A-AS1, HOTAIR-1, HOTAIR-2, HOTAIR-3, HOTAIRM1-2, HOTTIP, HOXA-AS2 , HULC, KCNQ1OT1, KRASP1, KRT18P55, KRT7-AS, L1PA16, LINC00032, LINC00152-1, LINC00152-2, LINC00152-3, LINC00312, LINC00467, LINC00473, LINC00668, LINC00673, LINC00857, LINC00901 , LINC00951, Linc00963, LINC00970, LINC01133, LINC01315-1, LINC01315-2, LINC01630-1, LINC01630-2, LINC-PINT, Linc-POU3F3-1, Linc-POU3F3-2, lincRNA-p21, lincRNA-RoR, lncRNA-CTD903, lncRNA-HEIH, LOC100130476, LOC100507661 , LOC101054525 , LOC389332, LSINCT5, LUCAT1, LUNAR1, LUST, MACROD2-AS1-1, MACROD2-AS1-2, MEG3-1, MEG3-2, MER11C, MIAT, MINA, MIR100HG, MIR155HG, MIR17HG, MIR31HG, MT1JP, MYCNOS-1, MYCNOS-2, MYCNUT, NAMA-1, NAMA-2, NBAT-1, NDM29, NEAT1-1, NEAT1-2, NKILA, NPTN-IT1, OR3A4P, ORAOV1, PACERR, PANDAR, PARROT, PAX8-AS1-1, PAX8-AS1-2, PCA3-1, PCA3-2, PCAT-1, PCAT18, PCAT29, PCAT6-1, PCAT6-2, PCBP2-OT1, PCGEM1, PGM5-AS1-1, PGM5-AS1-2, PICSAR, PINC, POU6F2-AS2, PRNCR1, PSF inhibiting RNA, PTCSC1, PTCSC3, PTENP1, RGMB-AS1, RMEL3, RUNX1-IT1, SAMMSON , SBF2-AS1, SCHLAP1, SNHG1, SNHG15, SNHG16, SNHG20, SNHG5, SOX2OT, ST7-AS1, ST7-AS2-1, ST7-AS2-2, ST7-OT3, ST7-OT4, SUMO1P3, TARID, TCL6, TDRG1, TERC, TIE1-AS, TRERNA1, TRIM52-AS1-1, TRIM52-AS1-2, TUG1-1, TUG1-2, TUSC7 , TUSC8, U79277, uc.338, uc.73A(P), UCA1, UFC1 lincRNA , VLDLR-AS1, WSPAR, WT1-AS-1, WT1-AS-2, WT1-AS-3, X91348, Yiya, ZEB2-AS1, ZFAS1-1, ZNF582-AS1-1, ZNF582-AS1-2, ZNF582-AS1-3
Neurodegenerative diseases [42]:
17A, 51A, anti-NOS2A, ATXN8OS , BACE1-AS, BDNF-AS-1, BDNF-AS-2, CDKN2B-AS1, DGCR5, DLX6-AS1, DPY19L2P2-1, DPY19L2P2-2, GDNF-AS1 -1, H19-1, H19-2, HAR1A, HAR1B (HAR1R), HTT-AS, LINC00299, LINC00599, LINC01262, lincRNA-p21, MALAT1, MEG3-1, MEG3-2, MIAT, NAT-RAD18, NEAT1-1, NEAT1-2, PINK1-AS, PNKY, RMST, SCAANT1, SNHG1, SNHG3, SOX2OT, TUG1-1, TUG1-2, TUNA-1, TUNA-2, U1 spliceosomal lncRNA, UCH1LAS    
Cardiovascular diseases [44]:
7SK, ALIEN, ATG9B-1, ATG9B-2, CARMEN-1, CDKN2B-AS1, EMX2OS, FENDRR, FGF10-AS1, GAS5, H19-1, H19-2, HAS2-AS1, HIF1A-AS1, HIF1A-AS2, HOTAIR-1, HOTAIR-2, HOTAIR-3, KCNQ1OT1, LINC00323, lincRNA-p21, LOC100129973, LOC100507537, MHRT, MIAT, MIR222HG, NONHSAT073641, NONHSAT112178, Novlnc35, Novlnc44, Novlnc76, NPPA-AS1, NRON, PANCR, PUNISHER, PVT1, SALRNA1, SENCR, SMILR, TERMINATOR, TIE1-AS, TUG1-1, TUG1-2, UCA1  
Kidney diseases [17]:
ENST00000456816, GAS5, H19-1, H19-2, HIF1A-AS1, HIF1A-AS2, HOTAIR-1, HOTAIR-2, HOTAIR-3, KCNQ1OT1, LOC389332, MEG3-1, MEG3-2, PVT1, RP11-354P17.15-001, TapSAKI, X91348
Diabetes [10]:
CDKN2B-AS1, HI-LNC25-1, HYMAI, IGF2-AS-1, LINC00271, MEG3-1, MEG3-2, NONRATT021972, PDZRN3-AS1, PVT1   
Immune system [15]:
GATA3-AS1-1, GATA3-AS1-2, GATA3-AS1-3, IFNG-AS1-1, IFNG-AS1-2, Linc-DC , lincRNA-EPS, M18204, MAFTRR, NRAV, NRIR, NTT, PACERR, RHOXF1P1, THRIL
Cell Cycle [11]:
CCND1 associated ncRNAs, CDKN2B-AS1, H19-1, H19-2, HULC, KCNQ1OT1, lincRNA-p21, lincRNA-RoR, lncRNA-HEIH, PANDAR, TUSC7
Lipid metabolism and adipogenesis [8]:
APOA1-AS, HOTAIR-1, HOTAIR-2, HOTAIR-3, HULC, NEAT1-1, NEAT1-2, RP1-13D10.2

 
Suffix (-1, -2, -3 …) represents different transcript isoforms of lncRNA genes.  

LncRNA-Workflow

Figure 1. Workflow of nrStar™ Functional LncRNA PCR Array

 

Compatible qPCR Instruments:

ABI ViiA™ 7
ABI 7500 & ABI 7500 FAST
ABI 7900HT
ABI QuantStudio™ 6 Flex Real-Time PCR system
ABI QuantStudio™ 7 Flex Real-Time PCR system
ABI QuantStudio™ 12K Flex Real-Time PCR System
Bio-Rad CFX384
Bio-Rad iCycler & iQ Real-Time PCR Systems
Eppendorf Realplex
QIAGEN Rotor Gene Q 100
Roche LightCycler 480
Stratagene Mx3000
Roche LightCycler 480